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Abstract The intensity modulated radiation therapy (IMRT) treatment planning problem
consists of several subproblems which are typically solved sequentially. We seek to combine
two of the subproblems: the beam orientation optimization (BOO) problem and the fluence
map optimization (FMO) problem. The BOO problem is the problem of selecting the beam
orientations to deliver radiation to the patient. The FMO problem is the problem of deter-
mining the amount of radiation intensity, or fluence, of each beamlet in each beam. The
solution to the FMO problem measures the quality of a beam set, but the majority of previous
BOO studies rely on heuristics and approximations to gauge the quality of the beam set. In
contrast with these studies, we use an exact measure of the treatment plan quality attainable
using a given beam set, which ensures convergence to a global optimum in the case of our
simulated annealing algorithm and a local optimum in the case of our local search algorithm.
We have also developed a new neighborhood structure that allows for faster convergence
using our simulated annealing and local search algorithms, thus reducing the amount of time
required to obtain a good solution. Finally, we show empirically that we can generate clinically

D. M. Aleman (B) · R. K. Ahuja · H. E. Romeijn
Department of Industrial and Systems Engineering, University of Florida, 303 Weil Hall,
P.O. Box 116595,Gainesville, FL 32611-6595, USA
e-mail: daleman1@ufl.edu

R. K. Ahuja
e-mail: ahuja@ise.ufl.edu

H. E. Romeijn
e-mail: romeijn@ise.ufl.edu

A. Kumar
Innovative Scheduling, Gainesville Technology Enterprise Center (GTEC), 2153 Hawthorne Road,
Suite 128, Gainesville, FL 32641, USA
e-mail: arvind@innovativescheduling.com

J. F. Dempsey
Department of Radiation Oncology, University of Florida, P.O. Box 100385, Gainesville,
FL 32610-0385, USA
e-mail: dempsey@ufl.edu

123



588 J Glob Optim (2008) 42:587–607

acceptable treatment plans that require fewer beams than in current practice. This may reduce
the length of treatment time, which is an important clinical consideration in IMRT.

Keywords Intensity modulated radiation therapy · IMRT · Beam orientation optimization ·
BOO · Neighborhood search · Add/Drop · Stimulated annealing

1 Introduction

In the United States alone, approximately 1.4 million people are newly diagnosed with cancer
each year (American Cancer Society, 2006), of which more than half will be treated with
some form of radiation therapy. During this therapy, beams of radiation are passed through
the patient in an attempt to erradicate the cancerous cells. Although the radiation beams will
in fact kill the cancerous cells, they will also kill normal cells. To avoid potentially serious
side effects which may significantly decrease the patient’s quality of life, the treatment plan
must be carefully designed so that while the target cells receive the prescribed radiation
dose, nearby organs and tissues (called critical structures) are spared. Typically, patients are
irradiated from several beams spaced around the patient so that the targets lie in the intersec-
tion of the beams, and thus receive the highest dose, whereas the critical structures receive
significantly less radiation and thus may be spared.

Currently, a technique called intensity modulated radiation therapy (IMRT) is considered
to be the most effective radiation therapy for many forms of cancer. The problem of designing
an IMRT treatment plan for an individual patient is a very large-scale mathematical program-
ming problem that is not yet solved satisfactorily. Current treatment planning systems decom-
pose the planning problem into several stages, and the corresponding subproblems are solved
sequentially. This paper addresses the integration of the beam orientation optimization (BOO)
and fluence map optimization (FMO) subproblems based on a convex voxel-based penalty
function-based formulation of the latter and associated efficient algorithm for solving it.

IMRT is so-named because each beam of radiation can be discretized in hundreds of
smaller beamlets, the radiation intensities (or, more accurately, fluences) of which can be
modulated independently of the other beamlets. These fluence values are known as a flu-
ence map, and optimization of these fluences given a fixed set of beams is known as fluence
map optimization (FMO). In order to model the IMRT problem as a mathematical program-
ming problem, a means of quantifying the quality of a treatment plan, the ability of the
plan to deliver the prescribed radiation dose to the specified target structures while ensuring
that important function organs receive an acceptably low amount of radiation, is required.
The optimal solution of the FMO problem performed with a given vector of beam orienta-
tions measures the quality of the treatment plan using those beams. Thus, our approach to
the problem of selecting the best directions from which to deliver radiation to the patient (the
BOO problem) is based on the treatment plan quality indicated by the optimal solution value
to the corresponding FMO problem.

The FMO problem has been extensively studied in the literature. FMO models previously
studied include linear programming (LP)-based multi-criteria optimization [22] and mixed-
integer linear programming (MILP) [5,27–30,50]. Both “physical” [9] and “biological”
[1,23,24,35,37,38,54,55] bases for the development of the objective function and constraints
have been used. Homogeneity of the target dose distribution [22], full-volume constraints
requiring that the dose in every voxel of a structure be within pre-determined upper and
lower bounds [5,22,29,30,43,46] and partial volume constraints requiring that dose in only
a subset of voxels be within pre-determined upper and/or lower bounds [29,30,43,45,50]
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have all been used as criteria for developing constraints in FMO models. Lim et al. [33] use
structure-based penalty functions.

In addition to varying constraints, there are many competing methods of formulating
the FMO objective function to reflect the quality of the treatment plan. Romeijn et al. [44]
showed that most of the treatment plan evaluation criteria proposed in the medical physics
literature are equivalent to convex penalty function criteria when viewed as a multicriteria
optimization problem, in the sense that for each set of treatment plan evaluation criteria from
a very large class there exists a class of convex penalty functions that produces an identical
Pareto efficient frontier.

Because of this equivalence, we use a convex penalty function-based approach to evaluate
the FMO problem, and the FMO model is used to investigate the BOO problem. Although
this approach could be used in a multicriteria setting, Romeijn et al. [43,46] suggest that
it is possible to quantify a trade-off between the different evaluation criteria that produces
high-quality treatment plans for a population of patients, eliminating the need to solve the
FMO problem as a multicriteria optimization problem for each individual patient.

The beam orientation optimization problem has also been extensively studied in the litera-
ture. The approaches in previous works largely consist of applying various global optimization
algorithms including evolutionary algorithms [2,3,49], genetic algorithms [15,21,31], parti-
cle swarm algorithms [32], quasi-Newton methods [13], artificial neural network algorithms
[48] and simulated annealing [10,14,34,42,47,53]. Heuristic measures including beam’s-
eye-view (BEV—a “bird’s-eye view” of the patient’s tissues and structures as seen from the
beam) [11,12,19,34,40–42], path of least resistance [20] and entropy [52]. Meedt et al. [36]
use a fast exhaustive search to obtain a beam vector solution.

We test the simulated annealing algorithm on the BOO problem, as well as existing and
new variants of a greedy neighborhood search heuristic called the Add/Drop algorithm (see
Kumar [26]) to obtain a good solution to the BOO problem. In each step of the Add/Drop
algorithm, a beam in the current beam set is replaced by a neighboring beam that yields an
improving solution. As with the simulated annealing implementation, we also apply our new
neighborhood to the Add/Drop algorithm and compare its performance to a commonly used
neighborhood structure.

With the exception of Das and Marks [13], Haas et al. [21] and Schreibmann [49], the pre-
vious studies do not select beam vectors using the FMO problem as a model for determining
the beam vector’s quality; instead, the beam vectors are chosen based on scoring methods
(e.g., BEV, path of least resistance), on approximations to the FMO or on locally optimal or
sub-optimal FMO solutions. Without basing BOO on the optimal FMO solutions, the result-
ing beam vector solutions have no guarantee of optimality, or even of local optimality. Das
and Marks [13] strive to maximize angle separation, which, although intuitively indicative
of a solution that may spare critical organs, may bias the objective function toward solutions
that are less capable of treating the targets and sparing critical structures than other solutions
containing beams that are close together. Haas et al. [21] also use intuitive geometric-based
measures to reduce the objective function weighting of beams in certain orientations to the
targets, which may prevent their algorithm from finding an optimal solution. Schreibmann
[49] use a multiobjective evolutionary algorithm to optimize both the number of beams and
their orientations.

In contrast to the previous studies, both our simulated annealing and local search
approaches to the BOO problem measure the quality of a beam vector, given the number
of beams to be used, according to the exact FMO solution, thus ensuring convergence to
a local optimum in the case of the Add/Drop algorithm and a global optimum in the case
of the simulated annealing algorithm run for a sufficient period time. Additionally, we have
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developed a new neighborhood structure which allows for faster convergence of the FMO
solution.

The paper is organized as follows. Section 2 describes the BOO model, Sect. 3 describes
neighborhood search methods for BOO (the Add/Drop and simulated annealing algorithms)
and Sect. 3.3 describes the new neighborhood structure applied to the neighborhood search
algorithms. Section 4 contains the results of the neighborhood search methods and Sect. 5
contains the conclusions on the effectiveness of our simulated annealing and local search
approaches, as well as the effectiveness of the flip neighborhood in improving the conver-
gence rate of the two algorithms.

2 Beam orientation optimization

Beam orientation optimization (BOO) is the problem of selecting from all of the available
beam orientations the best set to use in delivering a treatment plan. Coplanar beams are those
beams obtained from the rotation of only the gantry of the linear accelerator, the machine
which delivers radiation beams to the patient. Figure 1 shows a linear accelerator with arrows
indicating the movements available to its components; the gantry rotation is highlighted. If
all other components of the linear accelerator are fixed, the rotation of the gantry sweeps out a
set of coplanar beams. In practice, usually only coplanar beams are used to deliver radiation.

This study focuses on obtaining high-quality coplanar beam vectors for head-and-neck
cancer site treatment plans. A typical head-and-neck treatment plan consists of radiation
delivered from 5 to 9 nominally-spaced coplanar orientations around the patient.

2.1 BOO model

To determine the quality of a given beam set, a quantitative measure for assessing the quality
of the beam set must be used. Let F(θ) be a black-box function that quantifies the quality
of the treatment plan if radiation is delivered from beam vector θ = (θ1, . . . , θk), where k is
the user-specified number of orientations that may be used. We assume that F is formulated
in such a way that the minimum function value corresponds to the optimal plan. F must thus
be able to appropriately make the trade-offs between the contradictory goals of delivering a
prescribed radiation dose of targets and an acceptably low radiation dose to critical structures
so that they may be spared. This is especially problematic for certain cancers, such as tumors
in the head-and-neck area, which are often located very close to, for instance, the spinal cord,
brain stem and salivary glands.

To determine the quality of the beam vector, the decision vector θ is used as input into
the black-box function F(θ). For a treatment plan with k beams, the BOO problem is for-
mulated as

min F(θ)

subject to θ ∈ Bk,

where B is the set of candidate beams for a single beam. The solution vector θ lies in the solu-
tion space Bk = B× · · ·×B. The set of candidate beams B can be selected according to any
user-specified criteria. Although the linear accelerator is able to deliver a continuous set of
beam orientations from nearly any orientation in 3-dimensional space by rotating/translating
the various components indicated in Fig. 1, it is common to only consider a discretized set
of beam orientations due to limitations in machine tolerances. Because the many degrees of
freedom in a linear accelerator result in a very large set of orientations, it is also common to
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Fig. 1 The available movements of a linear accelerator; the gantry rotation is highlighted

further restrict the set of candidate beams by considering only a subset of the discretized can-
didate beams. The most common restriction is to allow only coplanar beams, beams that are
obtained from rotating only the gantry component of the linear accelerator (whose rotation
sweeps out a set of coplanar orientations). Thus, for f candidate beam orientations, let B be
a finite set defined by B = {360(k/ f ) : k = 0, . . . , f −1}. B is therefore a set of equi-spaced
beams containing orientation 0◦. For example, if f = 72, then B = {0, 5, . . . , 355}.

This formulation of the BOO problem is fundamentally nonlinear because the physics
of dose deposition change with each beam orientation; that is, the effect of a beam on each
patient can be drastically different than the effect of a neighboring beam. In most of the
previous BOO studies, the black-box function F is an approximation to the FMO solution,
whereas in our BOO model, the black-box function F(θ) is the optimal value function of the
convex FMO problem given the beam orientations θ described in Sect. 2.2, which allows for
an exact measure of the quality of each beam vector. Because of the nonlinearity in this for-
mulation, a simulated annealing algorithm, an algorithm capable of escaping local minima, is
proposed and applied to solve the problem. Additionally, a deterministic local search method
called the Add/Drop algorithm, which obtains a local minimum solution, is also enhanced
and applied.

2.2 FMO model

Given a fixed set of beams, different fluence maps (radiation intensities of beamlets) can
yield treatment plans with very different qualities. Thus, the quality of an optimized fluence
map must be considered when selecting a set of beam orientations to use in a treatment plan.
In this study, the convex penalty function-based approach to the FMO model described by
Romeijn et al. [43] is used. This formulation yields a quadratic programming problem with
linear constraints.
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The set critical structures is denoted by S and the set of target structures is denoted by
T . Each structure s ∈ S ∪ T is discretized into a finite number vs of volume cubes, known
as voxels. Approximately 350,000 voxels are typically required to accurately represent the
targets and surrounding structures of a head-and-neck cancer site.

In FMO, the patient is irradiated with k predetermined beam orientations (θ ∈ Bk), where
k is a user-specified value. In IMRT, each beam can be discretized into a rectangular grid
of typically 100–400 smaller beamlets. The set of all beamlet intensities, or bixels, in beam
θh is denoted by Bθh , h = 1, . . . , k. Fluence map optimization treats each bixel xi ∈ Bθh ,
h = 1, . . . , k, as a decision variable used to optimize the objective function chosen to make
the trade-offs in FMO that have been previously discussed.

The goal of IMRT treatment planning is to limit the dose received by each structure so
that the critical structures may be spared, but this is not always possible to do while still
delivering enough radiation to the targets to ensure that the cancer is eradicated. For exam-
ple, in head-and-neck cases, it is very common for one or more saliva glands to be partially
encased by a target volume. As organs in such a position may not be able to be spared, hard
constraints cannot be used to control the dose received in the critical structures as a feasible
solution may not exist. The patient must be treated, so the FMO model is formulated so that
there is always a feasible solution. To ensure that feasible solutions exist, we instead impose
penalties on each voxel for the amount of radiation dose received using a given set of beamlet
intensities. These voxel-based penalty functions ensure that the solution obtained provides a
quality treatment.

We introduce a threshold dose value Ts ≥ 0 for s ∈ S ∪ T that indicates the point at
which dose in a structure is penalized for being too high or too low. Define ws and p

s
to be

weighting factors for underdosing, and ws and ps to be weighting factors for overdosing in
structure s ∈ S ∪ T . Let Fjs denote a convex penalty function for voxel j in structure s of
the following form:

Fjs(z js) = 1

vs

(
ws

[
(Ts − z js)+

]p
s + ws

[
(z js − Ts)+

]ps
)

,

where z js represents the cumulative dose received by voxel j in structure s from the treatment
plan. The function is normalized over the number of voxels in the structure using the coeffi-
cient 1/vs . This normalization allows each structure to be represented equally, regardless of
how large or small it may be. By setting ws , ws ≥ 0 and ps , p

s
≥ 1, convexity is ensured

because (Ts − z js)+ and (z js − Ts)+ are always nonnegative. Since it is desirable to deliver
as little dose as possible to the critical structures, there is no penalty for underdosing, so
ws = 0 for s ∈ S.

The cumulative dose for a voxel can be expressed as the sum of the dose received in
the voxel by each beamlet in each beam. Each beamlet deposits some amount of energy into
every voxel along its path. Therefore, the amount of energy deposited into voxel j by beamlet
i may not be the full fluence of beamlet i , xi . For each bixel and voxel combination, there is
a dose deposition coefficient, Di js , that indicates the amount of dose received by voxel j in
structure s by beamlet i at unit intensity. The total dose received by voxel j in structure s is
thus given by

z js =
k∑

h=1

∑
i∈Bθh

Di js xi j = 1, . . . , vs, s = 1, . . . , S.
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A basic formulation of the FMO problem is then:

minimize
S∑

s=1

vs∑
j=1

Fjs(z js)

subject to z js =
k∑

h=1

∑
i∈Bθh

Di js xi j = 1, . . . , vs, s = 1, . . . , S

xi ≥ 0 i ∈ Bθh , h = 1, . . . , k.

The FMO model is solved using a primal-dual interior point algorithm which returns a
near-optimal solution [4,18,39]. A detailed explanation of the algorithm is beyond the scope
of this paper.

3 Neighborhood search approaches

Neighborhood search approaches are common methods of obtaining solutions to global opti-
mization problems. For a vector of decision variables, a neighbor is obtained by perturbing
one or more of the decision variables. A neighborhood for a particular vector of decision
variables is the set of all its neighbors for a given method of perturbating the decision variable
vector. A solution is considered to be locally optimal if there are no improving solutions in
its neighborhood.

Both deterministic and stochastic neighborhood search algorithms have been applied to a
wide variety of optimization problems. A deterministic neighborhood search algorithm is one
in which the entire neighborhood, or a pre-defined subset of the neighborhood, is enumerated
in each iteration to find an improving solution. Stochastic versions of neighborhood search
approaches, for example, simulated annealing, randomly select neighboring solutions in an
attempt to find an improving solution in each iteration.

For the BOO problem, we consider two neighborhood search methods. The first is a deter-
ministic neighborhood search algorithm that finds a locally optimal solution, and the second
is the simulated annealing algorithm, which, although based on neighborhood searches,
provably converges to the globally optimal solution for certain neighborhood structures.
Depending on computing power, it may be impractical to run the simulated annealing until
global convergence in practice; however, the algorithm can find good solutions quickly.

3.1 A deterministic neighborhood search method for BOO

Deterministic neighborhood search methods are optimization algorithms that start from a
given solution and then iteratively select the best point in the current neighborhood as the
next iterate. The best point in the neighborhood can be found by complete enumeration if the
neighborhood is small, or by optimization if the neighborhood is large or if objective function
evaluations are expensive. Due to the complexity of the BOO problem, even when only a
subset of available orientations is considered, we will focus on smaller neighborhoods and
use enumeration. However, the neighborhood could alternatively be searched heuristically,
for example by searching the neighborhood until the first improving solution is found, rather
than the best improving solution. If no improved solution can be found, the current solution
is a local optimum.

In our implementation of the Add/Drop algorithm, a small neighborhood is desired for
enumeration purposes. In each iteration, a neighborhood for just a single beam is considered.
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Say a beam set consisting of k beams is desired. Letting the neighborhood of a single beam
θh in θ be denoted as Nh(θ), the Add/Drop algorithm is as follows:

• Initialization:

– Choose an initial starting solution θ (0).
– Set θ∗ = θ (0) and i = 0.

• Iteration:

1. Select h ∈ {1, . . . , k}, then generate θ̄ ∈ Nh(θ (i)).
2. If F(θ̄) < F(θ∗), set θ∗ = θ (i+1) = θ̄ and set i ← i + 1.
3. If all points in ∪k

h=1Nh(θ (i)) have been sampled without improvement, stop with θ∗
as a local minimum. Otherwise, repeat Step 1.

3.1.1 Neighborhood definition

In each step of the Add/Drop algorithm, a beam in the current solution is replaced with an
improving beam in its neighborhood. Rather than define a neighbor as related to an entire
beam vector, the neighborhoods of individual beams are considered. The neighborhood of a
single beam θh in θ is defined as Nh(θ) = {(θ1, . . . , θh−1, θ mod 360, θh+1, . . . , θk) ∈ Bk :
θh − δ ≤ θ ≤ θh + δ}. In other words, the neighborhood of a beam is all beams within ± δ

degrees taking into account the cyclic nature of the angles. The cyclicality of the angles refers
to the fact that all angles can be represented by degrees in [0,360]. For example, 400◦ = 40◦
and −100◦ = 260◦. The expression θ mod 360 captures this cyclicality.

3.1.2 Neighbor selection

The process of selecting a neighboring point in each iteration consists of two steps: selecting
the index h to change and then selecting an improving angle in Nh(θ) to replace θh . If h
is selected as i mod k + 1, the algorithm will cycle through each index sequentially, simi-
lar to a Gibbs Sampler (see, for example, Geman and Geman [17] and Gelfand and Smith
[16]). The Gibbs Sampler also uses a similar two-step approach to generating a new point
by sequentially generating a new value for each variable in turn. If h is selected randomly in
each iteration, the resulting algorithm is similar to a Hit-and-Run method (see, for example,
Smith [51] and Bélisle [7]), in which a variable to be changed is selected randomly, and then
a new value for that variable is also selected randomly within a neighborhood.

Once h is selected, the new value for θh can be generated by enumeration or by a heuristic
method. The Add/Drop algorithm compares the quality of the new solution to the current
solution, and then only accepts improving solutions. This greedy approach results in a locally
optimal solution.

3.1.3 Implementation

The index of beam angle to be changed in each iteration, h in Step 1 of the algorithm in
Sect. 3.1, is chosen as h = i mod k + 1 to cycle through each index in a sequential man-
ner. In the Add/Drop implementation, once h is determined, θ̄ in iteration i is chosen as
θ̄ = arg minθ∈Nh(θ (i))

{F(θ)}. By replacing each beam by the most improving neighbor,
the Add/Drop algorithm is a greedy heuristic which terminates when there is no improving
neighbor for any beam.

Additionally, a multi-start aspect is added by repeating the algorithm with multiple initial
starting points. Because the only constraint in our FMO model is that beamlet fluences are
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nonnegative, any beam solution will provide a feasible FMO solution, although clearly some
beam solutions will provide better optimal FMO solution values than others. For example,
one strategy to select starting points would be to select a random starting point according to
some distribution. Another strategy would be to select an equi-spaced solution and rotate it
a fixed number of times to obtain new starting points until the initial equi-spaced solution is
repeated. Equi-spaced beam solutions are common in clinical practice for an odd number of
beams. The reason that such a method is not generally used in practice for even-numbered
beams is that the resulting beam set would contain parallel-opposed beams (beams that lie
on the same line), which are not used by convention as it is believed that the effect of a par-
allel-opposed beam is very similar to simply doubling the radiation delivered from a beam.
If an equi-spaced solution is not possible given a beam set of k beams and the discretiza-
tion level of the candidate beam set B, then the solution can be rounded so that θ

(0)
h ∈ B,

h = 1, . . . , k.

3.2 Simulated annealing

The simulated annealing algorithm used is similar to the classical simulated annealing
approach proposed in Kirkpatrick et al. [25]. The simulated annealing algorithm is based
on the Metropolis algorithm, wherein a neighboring solution to the current iterate is gener-
ated, and if it is an improving point, it becomes the current iterate. Otherwise, it becomes
the current iterate with probability exp{�F/T }, where �F is the difference in FMO value
between the current iterate and the newly generated point and T is the temperature, a measure
of the randomness of the algorithm. If T = 0, then only improving points are selected. If T
is very large, then any move is accepted, which is essentially a random search.

The simulated annealing algorithm starts with an initial temperature T0 and performs a
number of iterations of the Metropolis algorithm using T = T0. Then, the temperature is
decreased according to some cooling schedule such that {Ti } → 0.

Obvious parallels can be drawn between the simulated annealing algorithm and the
Add/Drop neighborhood search method described in Sect. 3.1. While the Add/Drop algo-
rithm deterministically searches the neighborhood for improving solutions, the simulated
annealing algorithm randomly selects neighboring solutions. Rather than being limited by
the ability to only move to improving solutions, the simulated annealing algorithm may still
move to a non-improving solution with a certain probability, thus allowing for the escape
from local minima. The Add/Drop algorithm, on the other hand, is a greedy algorithm that
is specifically designed to find local minima.

The simulated annealing algorithm is essentially a randomization of the Add/Drop
algorithm. In addition to the added randomness, the possibility of changing more than one
beam in each iteration is allowed by selecting a set of indices H ⊆ {1, . . . , k} to change,
rather than just selecting a single index h. The simulated annealing algorithm is as follows:
• Initialization:

– Choose an initial beam set θ (0) and calculate its FMO objective function value F0.
– Set θ̂ = θ (0), F̂ = F0, i = 0.

• Iteration:

1. Select H ⊆ {1, . . . , k}, generate θ ∈ ∪h∈H Nh(θ (i)), and calculate its FMO objective
function value F .

2. If F < F̂ , set F̂ = F , Fi+1 = F , θ (i+1) = θ and θ̂ = θ . Otherwise, set Fi+1 = F
and θ (i+1) = θ with probability exp{(Fi − F)/Ti }.

3. Set i ← i + 1 and repeat Step 1.
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The simulated annealing algorithm has been previously applied to the BOO problem.
Bortfeld and Schlegel [10] use the “fast” simulated annealing algorithm described by Szu
and Hartley [8] which employs a Cauchy distribution in generating neighboring points. Stein
et al. [53], Rowbottom [47] and Djajaputra et al. [14] also use a Cauchy distribution in gen-
erating neighboring solutions. Lu et al. [34] randomly select new points satisfying BEV and
conventional wisdom criteria and Pugachev and Xing [42] randomly generate new points and
then vary them according to an exponential distribution. All accept improving solutions, and
with the exception of Rowbottom et al. [47] who only accept improving solutions (essentially
Ti = 0 for all i), all accept non-improving solutions with a Boltzmann probability. Addition-
ally, none of the previous BOO studies employing simulated annealing use the exact FMO
as a measure of the quality of a beam set.

3.2.1 Neighborhood definition

Two neighborhood structures are explored. The first neighborhood is similar to that described
in Sect. 3.1.1 in that a neighborhood Nh(θ) is considered for only a single beam index
h ∈ {1, . . . , k}, just as in the Add/Drop method.

As an extension to changing a single angle in each iteration, we also consider a neighbor-
hood that involves changing all beams in each iteration, corresponding to H = {1, . . . , k}
in Step 1 of the simulated annealing algorithm in Sect. 3.2. This neighborhood is defined as
N (θ) = ∪k

h=1Nh(θ). Again, the neighborhoods for the individual beams are defined as in
the first method, with bounds of ± δ degrees.

3.2.2 Neighbor selection

The method of selecting a neighbor depends on the neighborhood structure as described
in Sect. 3.2.1. In the first method where only one beam is changed at a time, a neighbor
is selected using the randomized approach described in Sect. 3.1.2. Once h is selected, the
probability of selecting a particular solution in Nh(θ) where the new θ is d degrees from θh is
P{D = d}, where D is the realization of a random variable of some probability distribution
defined on the interval [−δ,−δ + 1, . . . , δ].

For the neighborhood N (θ) where all beams are changed in an iteration, the new value
for each beam h ∈ {1, . . . , k} is generated from Nh(θ) in the same manner described above.

3.2.3 Implementation

In addition to basing our algorithms on the exact FMO solution rather than on heuristics
or scoring measures, our simulated annealing approach differs from the previous studies in
the distribution used to generate neighbors, the definition of the neighborhood, the cooling
schedule and the number of iterations/restarts used. Not only do we use a new neighbor-
hood structure, but also a geometric probability distribution rather than a uniform or Cauchy
distribution on the neighborhood. The geometric distribution is similar in shape to the Cau-
chy distribution in that they both can have fat tails depending on the choice of probability
parameters. The fat tails of these distributions allow for points far away from the current
solution to be selected as successive iterates, which potentially increases the likelihood of
finding a globally optimal solution. The geometric distribution has the added attractiveness
of producing discrete solutions, which is desirable for the BOO problem in which discrete
solutions are preferred.
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Fig. 2 Selection probability in Nh(θ)

By using the cooling schedule Ti+1 = αTi with α < 1, the sequence of temperatures {Ti }
converges to zero as the number of iterations increases. In our approach, the neighborhood
of a beam for both the Nh(θ) and N (θ) neighborhoods is defined using δ = 180, that is,
Nh(θ) = B. By defining the neighborhood of each beam to be the entire single-beam solution
space, the simulated annealing algorithm converges to the global optimum when using the
neighborhood N (θ) defined in Sect. 3.2.1. Though Nh(θ) is large, each beam in Nh(θ) is
assigned a probability so that only the beams closest to θh have a significant probability of
being selected. Figure 2 shows the probability of replacing θh with beams at varying distances
using probability p = 0.25 for the geometric distribution. Note that the current beam cannot
be selected as a replacement.

Additionally, as with the Add/Drop method, a multi-start aspect is added to the simulated
annealing algorithm by repeating the algorithm using several different starting points.

3.2.4 Convergence

The type of neighborhood structure can affect the global convergence property of the simu-
lated annealing algorithm. Unlike many previously proposed simulated annealing algorithms,
our algorithm converges to the globally optimal solution to the BOO problem under mild
conditions. The following theorem summarizes these conditions and shows that our sim-
ulated annealing algorithm retains the global convergence property for some of the tested
neighborhood structures.

Theorem 3.1 Suppose that

• H = {1, . . . , k}
• limi→∞ Ti = 0
• δ = 180
• There is a positive probability of generating any solution in the neighborhood.
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Fig. 3 The flip neighborhood. (a) Graphical depiction of Nh(θ) (top shaded area) and N F
h (θ) (top and bottom

shaded areas) for θh = 0. (b) Selection probability in N F
h (θ)

Then our simulated annealing algorithm converges to the global optimum solution in the
sense that

lim
i→∞ Fi = F∗ in probability

where F∗ is the global optimum value of the BOO problem.

Proof This follows from Theorem 1 in Bélisle et al. [6]. ��
3.3 A new neighborhood structure

For the BOO problem, the neighborhood structure that is typically used for a vector of beam
orientations is simply the collection of beam vectors obtained from changing one or more of
the beams to a neighboring beam, where each beam has its own neighborhood Nh(θ).

In addition to Nh(θ), we consider a new neighborhood which we call a “flip” neighbor-
hood. The flip neighborhood of a beam index h consists of Nh(θ) plus a neighborhood around
the parallel opposed beam of h (the beam 180◦ away, h′ = (θh + 180) mod 360). The flip
neighborhood can be defined as N F

h (θ) = {(θ1, . . . , θh−1, θ mod 360, θh+1, . . . , θk) ∈ Bk :
θ ∈ [θh − δ, θh + δ] ∪ [θh + 180− δF , θ + 180+ δF ]}. Note that the values δ and δF may be
different. Figure 3a depicts a flip neighborhood for a beam located at 0◦ degrees, the center
of the top shaded wedge representing Nh(θ), where θh = 0.

The motivation for the flip neighborhoods arises from the observation that many of the
3-beam simulated annealing plans generated using the regular neighborhood contained two
beams very close to two beams in the optimal solution (obtained by explicit enumeration),
while the third beam was very close to the parallel opposed beam of the third beam in the
optimal solution. Given this observation, it is intuitive that the inclusion of the neighborhood
around the parallel beam should provide improved solutions.

The neighborhoods Nh(θ) and N F
h (θ) with varying δF values are applied to both the

Add/Drop and the simulated annealing frameworks. For the geometric probability distri-
bution used in the simulated annealing method, Fig. 3b shows the probability of selecting
beams at different distances using a flip neighborhood with probability p = 0.25. Note that
the current beam cannot be selected as its own neighbor.
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4 Results

The simulated annealing method was tested on six head-and-neck cases using a Windows XP
computer with a 2.13 GHz Pentium M processor and 2 GB of RAM. On average,≈ 340 FMOs
were calculated in the 30-min run time allowed for the simulated annealing and Add/Drop
algorithms. It should be noted that while 30 min is enough time for the simulated annealing
algorithm to obtain a good solution, it is not enough time to obtain the globally optimal
solution. Because coplanar beams are generally used exclusively in head-and-neck cancer
treatments, only coplanar beam solutions are investigated here. Beams were selected on a
5-degree grid, yielding 72 candidate coplanar beams.

The simulated annealing and Add/Drop algorithms were used to obtain 4-beam coplanar
plans using regular and flip neighborhoods. Plans consisting of four beams were obtained
because previous tests on 3-beam plans indicate that it is unlikely that only three coplanar
beams will deliver a quality treatment plan. We will show that quality treatment plans can be
obtained using as few as four coplanar beams, which can lead to shorter treatment times.

In order to compare the quality of the treatment across different plans, the plans are
compared to equi-spaced treatment plans of four, five and seven beams whose fluences are
optimized using the same FMO model described in Sect. 2.2. The beams in the equi-spaced
plans are obtained by dividing 360◦ by the number of beams. For 5-beam and 7-beam equi-
spaced plans, this type of treatment plan is typical for head-and-neck cases in clinical practice
in the Davis Cancer Center at Shands Hospital at the University of Florida. The 5- and 7-beam
equi-spaced plans are chosen for comparison as they are common treatment plans for the
head-and-neck site. Additionally, this comparison will show that the algorithms are success-
ful enough to compete with equi-spaced plans with nearly double the number of beams. The
4-beam equi-spaced plan is shown to illustrate that in order to use as few as four beams, BOO
must be applied.

Figure 4 demonstrates the improved convergence times possible using the flip neighbor-
hood.
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Fig. 4 Add/Drop (a) and simulated annealing (b) comparison of FMO convergence
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4.1 Add/Drop algorithm results

The Add/Drop algorithm was allowed to run for 30 min to generate a 4-beam plan. The Nh(θ)

neighborhood with δ = 20 and the N F
h (θ) with δF = 0 and δF = 20 neighborhoods are

tested for the Add/Drop algorithm. The value δ = 20 is chosen to approximate the neigh-
borhood size that is expected from the simulated annealing implementation using a large flip
neighborhood, where δF = 180. More details on the simulated annealing implementations
are provided in Sect. 4.2.

Using Nh(θ), the 4-beam Add/Drop solution is nearly identical to the 7-beam equi-spaced
plan, while the flip neighborhoods allow the Add/Drop algorithm to find 4-beam solutions
that exceed the quality of the 7-beam plans. Figure 4a illustrates that the flip neighborhoods
provide faster FMO convergence than that of Nh(θ), while Figs. 7 and 9 demonstrates the
quality of the solutions.

4.2 Simulated annealing results

Several parameter sets were tested for the simulated annealing algorithm. For simplicity,
each of the parameter sets and methods of generating a neighboring solution are numbered
according to Table 1. The value m refers to the number of Metropolis iterations performed
before modifying the temperature, while n is the number of times the temperature is mod-
ified. The value N is the number of beams that are changed to neighboring beams in each
iteration.

For the cooling schedule, we update the temperature according to an exponential cooling
schedule, Ti+1 = αTi , where α < 1. Due to the random nature of the algorithm, the algorithm
is restarted five times, each time with a different initial starting point. The first initial starting
point is an equi-spaced solution, and each subsequent starting point is the previous initial
solution rotated by d degrees, where candidate angles are considered on a d-degree grid, that
is, every dth angle is considered. The number of simulated annealing and Metropolis itera-
tions are chosen such that the total number of iterations is 500. To ensure clinical practicality,
the algorithm was allowed to run for a maximum of 30 min or 500 iterations, whichever came
first.

Table 1 Definitions
of implementations

Number n m N α T0

1 100 1 1 0.9 0
2 10 10 1 0.9 0
3 100 1 1 0.99 0
4 10 10 1 0.99 0
5 100 1 1 0.9 75
6 10 10 1 0.9 75
7 100 1 1 0.99 75
8 10 10 1 0.99 75
9 100 1 all 0.9 0
10 10 10 all 0.9 0
11 100 1 all 0.99 0
12 10 10 all 0.99 0
13 100 1 all 0.9 75
14 10 10 all 0.9 75
15 100 1 all 0.99 75
16 10 10 all 0.99 75
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The initial temperature values tested are T0 = 0 and T0 = 75. T0 = 0 results in the
acceptance of only improving solutions, while the initial temperature value 75 was selected
as the value that would approximately yield a 50% probability of selecting a non-improving
solution for the initial iterations of the algorithm.

For both the Nh(θ) and N F
h (θ) neighborhoods, δ = δF = 180 is used so that the entire

solution space is considered as a neighborhood. As shown in Fig. 2, the probability of selecting
a beam 20◦ away using the Nh(θ) neighborhood with geometric distribution with p = 0.25
is only 0.39% on a 5◦ grid. We consider this sufficiently small to not consider neighborhoods
larger than δ = 20 for Nh(θ) and δF = 20 for N F

h (θ) in the Add/Drop algorithm. Addition-
ally, just as in the Add/Drop implementation, the neighborhood N F

h (θ) with δF = 0 is also
considered.

Figure 4b shows that the flip neighborhoods converge in FMO value significantly faster
than does the Nh(θ) neighborhood, while Figures 8 and 10 shows that the flip neighborhoods
provide comparable solution quality to both the non-flip simulated annealing and 7-beam
equi-spaced solutions.

4.3 Clinical implementation

Because there is no fundamental way of quantifying a treatment plan, a tool commonly used
by physicians to judge the quality of a treatment plan is the dose-volume histogram (DVH). A
DVH is a graphical measure of the cumulative dose received by a given structure. It specifies
the percentage of each structure’s volume that receives at least a certain amount of dose,
thus providing an intuitive means of assessing the quality of a treatment plan. Regardless
of the methods used to formulate and solve IMRT optimization problems, DVHs must be
examined as a fail-safe check that the solutions are clinically acceptable. For a given beam
solution, there may be many clinically satisfactory treatment plans, however, some treatment
plans will be better than others. For example, a physician may decide that a treatment plan
which spares three out of four saliva glands is acceptable, but a better treatment plan using a
different FMO solution may spare all four saliva glands. For this reason, we use the optimal
FMO solution to measure the BOO solutions.

The plans tested each contain two target structures. The gross tumor volume (GTV) is
the tumor mass observed from imaging scans. The clinical tumor volume (CTV) is the GTV
plus some margin specified by the physician. The CTV is used by physicians in case there
are elements of the tumor mass that cannot be seen from the imaging scans, and the dose
prescribed for the CTV is less than the dose prescribed by the GTV.

For target structures, we require that at least 95% of the target receives the full prescription
dose. Typically, a good plan ensures that the target receives a homogeneous dose at the pre-
scription level indicated by the physician. A hotspot occurs if a significant percentage of the
target receives more than the prescription dose. Similarly, a coldspot occurs where less than
a certain percent of the target receives the prescription dose. Because the GTV is contained
inside the CTV, the CTV will necessarily have a sizable, but less important, hotspot. Thus,
we are only concerned with GTV overdose.

The sparing criteria for each of the common critical structures in head-and-neck cases are
listed in Table 2. The saliva glands, the left and right submandibular and parotid glands, are of
particular importance in head-and-neck treatment planning. Because of their close proximity
to the usual tumor locations, the four saliva glands can be difficult to spare. Studies show
that a patient can lead a relatively normal life with three of the four glands spared. The loss
of other organs, especially the spinal cord, will also greatly affect the patient’s quality of
life, but head-and-neck tumors are usually situated in such a way that other organs can be
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Table 2 Sparing criteria varies
for each critical structure

Structure Sparing criteria

Brain stem 100% ≤ 55 Gy
Eyes 50% ≤ 30 Gy
Mandible 100% ≤ 70 Gy
Optic chiasm 100% ≤ 55 Gy
Optic nerves 100% ≤ 50 Gy
Parotid glands 100% ≤ 30 Gy
Skin 100% ≤ 60 Gy
Spinal cord 100% ≤ 45 Gy
Submandibular glands 100% ≤ 30 Gy
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Fig. 5 (a) The Add/Drop plans obtain superior target coverage to the 4-beam equi-spaced plan and still
achieve a smaller hotspot. (b) The Add/Drop plans spare all saliva glands, while the 4-beam equi-spaced plan
spares only one

easily spared in the FMO optimzation. For this reason, the DVH results provided include
only target structures and saliva glands for clarity, although the model does in fact account
for and spare the organs listed in Table 2.

DVHs for a representative case comparing the 4-beam equi-spaced plan with the Add/Drop
and simulated annealing plans are shown in Figs. 5 and 6. DVHs for the same case com-
paring the 5-beam equi-spaced plan are shown in Figs. 7 and 8. Likewise, DVHs comparing
the 7-beam equi-spaced plan with the Add/Drop and simulated annealing plans are shown in
Figs. 9 and 10.

The simulated annealing plans are obtained using a regular neighborhood and flip
neighborhoods with δF = 0 and δF = 180. The Add/Drop plans are obtained using a
regular neighborhood and flip neighborhoods with δF = 0 and δF = 20. The sparing criteria
used for the saliva glands, no more than 50% of the gland receiving 30 Gy, is marked by the
star in the saliva gland DVHs. Note that from a clinical standpoint, the amount by which an
organ is spared is unimportant; it is only important that the organ is spared. The prescription
dose for the GTV is 73.8 Gy, which is marked by the vertical line in the target DVHs. As
previously stated, for target structures, we require that at least 95% of the target receives the
full prescription dose.

Figures 5 and 6 illustrate that a 4-beam equi-spaced treatment plan yields a far from satis-
factory treatment. The targets are underdosed and the saliva gland sparing is poor. The 4-beam
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Fig. 6 (a) The simulated annealing plans obtain superior target coverage to the 4-beam equi-spaced plan and
still achieve a smaller hotspot. (b) The simulated annealing plans spare all saliva glands, while the 4-beam
equi-spaced plan saves only one
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Fig. 7 (a) The Add/Drop plans achieve nearly identical target coverage when compared to the 5-beam equi-
spaced plan. (b) The saliva gland sparing in the Add/Drop plans and the 5-beam equi-spaced plan is also
clinically equivalent

Add/Drop and simulated annealing plans, however, achieve acceptable target coverage with
a smaller hotspot than the 4-beam equi-spaced plan. The Add/Drop and simulated annealing
plans also spare more saliva glands than the 4-beam equi-spaced plan.

In comparison to the 5-beam equi-spaced plan, the 4-beam Add/Drop and simulated
annealing plans obtained remarkably similar target coverage. Figure 7 shows that the Add/
Drop plans were able to achieve a smaller hotspot, whereas Fig. 8 shows that the simulated
annealing plans are indistinguishable from the 5-beam equi-spaced plans in terms of target
coverage. For both Add/Drop and simulated annealing, the 4-beam plans show clinically
equivalent saliva gland sparing, although the simulated annealing plans deliver less dose to
the saliva glands.

Figure 9 shows that the 4-beam Add/Drop plans obtain very similar treatments when
compared to the 7-beam equi-spaced DVHs. Each of the Add/Drop plans are comparable to
the 7-beam equi-spaced plan in terms of both saliva gland sparing and target coverage.
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Fig. 8 (a) The simulated annealing plans achieve virtually indistinguishable target coverage with the 5-beam
equi-spaced plan. (b) The saliva gland sparing in the simulated annealing plans and the 5-beam equi-spaced
plan is also clinically equivalent
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Fig. 9 (a) The Add/Drop plans achieve nearly identical target coverage when compared to the 7-beam equi-
spaced plan. (b) The saliva gland sparing in the Add/Drop plans and the 7-beam equi-spaced plan is also
clinically equivalent
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Fig. 10 (a) Unlike the 7-beam equi-spaced plan, the 4-beam simulated annealing plans do not overdose the
target. (b) The simulated annealing plans are also capable of sparing more saliva glands than the 7-beam
equi-spaced plan
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Figure 10 reveals that the 7-beam equi-spaced plan actually overdoses the target and has a
larger hotspot than the 4-beam simulated annealing plans. The 7-beam equi-spaced plan only
spares three of the four saliva glands, whereas the 4-beam simulated annealing plans spare
three or more saliva glands. The simulated annealing plans obtained using the flip neigh-
borhoods spare all four saliva glands, while the plan obtained by the Nh(θ) neighborhood
only spares three saliva glands, indicating that the flip neighborhoods do in fact find superior
solutions in terms of clinical quality.

5 Conclusions

We have shown that for head-and-neck cases, quality plans with fewer beams than a standard
treatment plan can be obtained if BOO is applied. The simulated annealing and Add/Drop
algorithms both regularly obtained quality treatment plans with as few as four beams in
only 30 min. The use of the flip neighborhood improves the rate of FMO convergence
in both algorithms, and even has the ability to improve organ sparing as shown in the
simulated annealing results. The simulated annealing and Add/Drop algorithms performed
comparably to each other, with neither algorithm indicating a significant benefit over the
other.

It is possible to incorporate flip neighborhoods into other BOO algorithms that rely
on neighborhood searches to yield improved treatment plans in clinically acceptable time
frames.

Acknowledgements The work of D. M. Aleman was supported by The Alliance for Graduate Education
and the Professoriate and a Graduate research Fellowship of the National Science Foundation. The work of
C. J. F. Dempsey was supported by the National Science Foundation under grant no. DMI-0457394.

References

1. Alber, M., Nusslin, F.: An objective function for radiation treatment optimization based on local
biological measures. Phys. Med. Biol. 44, 479–493 (1999)

2. Aleman, D.M., Romeijn, H.E., Dempsey, J.F.: Beam orientation optimization methods in intensity
modulated radiation therapy treatment planning. IIE Conference Proceedings (2006)

3. Aleman, D.M., Romeijn, H.E., Dempsey, J.F.: A response surface approach to beam orientation
optimization in intensity modulated radiation therapy treatment planning. INFORMS J. Comput:
Coumputat. Biol. Med. Appl. (2008, to appear)

4. Aleman, D.M., Glaser, D., Romeijn, H.E., Dempsey, J.F.: A primal-dual interior point algorithm for
fluence map optimization in intensity modulated radiation therapy treatment planning. Work in progress
(2008)

5. Bednarz, G., Michalski, D., Houser, C., Huq, M.S., Xiao, Y., Anne, P.R., Galvin, J.M.: The use of
mixed-integer programming for inverse treatment planning with pre-defined field segments. Phys. Med.
Biol. 47, 2235–2245 (2002)

6. Bélisle, C.J.P.: Convergence theorems for a class of simulated annealing algorithms on R
d . J. Appl.

Prob. 29, 885–895 (1992)
7. Bélisle, C.J.P., Romeijn, H.E., Smith, R.L.: Hit-and-run algorithms for generating multivariate

distributions. Math. Oper. Res. 18, 255–266 (1993)
8. Bomze, I.: Fast simulated annealing. Phys. Lett. 122A, 157–162 (1987)
9. Bortfeld, T.: Optimized planning using physical objectives and constraints. Semin. Radiat. Oncol. 9, 20–

34 (1999)
10. Bortfeld, T., Schlegel, W.: Optimization of beam orientations in radiation therapy: some theoretical

considerations. Phys. Med. Biol. 38, 291–304 (1993)

123



606 J Glob Optim (2008) 42:587–607

11. Chen, G.T., Spelbring, D.R., Pelizzari, C.A., Balter, J.M., Myrianthopoulos, L.C., Vijayakumar,
S., Halpern, H.: The use of beams eye view volumetrics in the selection of non-coplanar radiation
portals. Int. J. Radiat. Oncol. Biol. Phys. 23, 153–163 (1992)

12. Cho, B.C.J., Roa, H.W., Robinson, D., Murray, B.: The development of target-eye-view maps for
selection of coplanar or noncoplanar beams in conformal radiotherapy treatment planning. Med.
Phys. 26, 2367–2372 (1999)

13. Das, S.K., Marks, L.B.: Selection of coplanar or noncoplanar beams using three-dimensional optimi-
zation based on maximum beam separation and minimized nontarget irradiation. Int. J. Radiat. Oncol.
Biol. Phys. 38, 643–655 (1997)

14. Djajaputra, D., Wu, Q., Wu, Y., Mohan, R.: Algorithm and performance of a clinical IMRT beam-angle
optimization system. Phys. Med. Biol. 48, 3191–3212 (2003)

15. Ezzell, G.A.: Genetic and geometric optimization of three-dimensional radiation therapy treatment
planning. Med. Phys. 23, 293–305 (1996)

16. Gelfand, A.E., Smith, A.F.M.: Sampling based approaches to calculating marginal densities. J. Am.
Stat. Assoc. 85, 398–409 (1990)

17. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of
images. IEEE Trans. Pattern Analy. Mach. Intell. 6, 721–741 (1984)

18. Glaser, D.: A primal-dual interior-point method for convex Fluence Map Optimization problems.
Master’s thesis, Royal Institute of Technology (2005)

19. Goitein, M., Abrams, M., Rowell, D., Pollari, H., Wiles, J.: Multi-dimensional treatment planning:
Ii. beams eye-view, back projection, and projection through CT sections. Int. J. Radiat. Oncol. Biol.
Phys. 9, 789–797 (1983)

20. Gokhale, P., Hussein, E.M., Kulkarni, N.: The use of beams eye view volumetrics in the selection of
non-coplanar radiation portals. Med. Phys. 23, 153–163 (1994)

21. Haas, O.C., Burnham, K.J., Mills, J.: Optimization of beam orientation in radiotherapy using planar
geometry. Phys. Med. Biol. 43, 2179–2193 (1998)

22. Hamacher, H.W., Küfer, K.-H.: Inverse radiation therapy planning a multiple objective optimization
approach. Discr. Appl. Math. 118, 145–161 (2002)

23. Jones, L.C., Hoban, P.W.: Treatment plan comparison using equivalent uniform biologically effective
dose (eubed). Phys. Med. Biol. 45, 159–170 (2000)

24. Kallman, P., Lind, B.K., Brahme, A.: An algorithm for maximizing the probability of complication–free
tumor–control in radiation-therapy. Phys. Med. Biol. 37, 871–890 (1992)

25. Kirkpatrick, S., Gelatt, C.D.: Optimization by simulated annealing. Science 220, 671–680 (1983)
26. Kumar, A.: Novel methods for intensity-modulated radiation therapy treatment planning. PhD thesis,

University of Florida (2005)
27. Langer, M., Brown, R., Urie, M., Leong, J., Stracher, M., Shapiro, J.: Large-scale optimization of beam

weights under dose-volume restrictions. Int. J. Radiat. Oncol. Biol. Phys. 18, 887–893 (1990)
28. Langer, M., Morrill, S., Brown, R., Lee, O., Lane, R.: A comparison of mixed integer programming

and fast simulated annealing for optimizing beam weights in radiation therapy. Med. Phys. 23, 957–
964 (1996)

29. Lee, E.K., Fox, T., Crocker, I.: Simultaneous beam geometry and intensity map optimization in
intensity-modulated radiation therapy treatment planning. Ann. Oper. Res. 119, 165–181 (2003)

30. Lee, E.K., Fox, T., Crocker, I.: Integer programming applied to intensity-modulated radiation therapy
treatment planning. Int. J. Radiat. Oncol. Biol. Phys. 64, 301–320 (2006)

31. Li, Y., Yao, J., Yao, D.: Automatic beam angle selection in IMRT planning using genetic algorithm. Phys.
Med. Biol. 49, 1915–1932 (2004)

32. Li, Y., Yao, J., Yao, D., Chen, W.: A particle swarm optimization algorithm for beam angle selection in
intensity-modulated radiotherapy planning. Phys. Med. Biol. 50, 3491–3514 (2005)

33. Lim, G.J., Choi, J., Mohan, R.: Iterative solution methods for beam angle and fluence map optimization
in intensity modulated radiation therapy planning. OR Spectrum 30, 289–309 (2008)

34. Lu, H.M., Kooy, H.M., Leber, Z.H., Ledoux, R.J.: Optimized beam planning for linear accelerator-based
stereotactic radiosurgery. Int. J. Radiat. Oncol. Biol. Phys. 39, 1183–1189 (1997)

35. Mavroidis, P., Lind, B.K., Brahme, A.: Biologically effective uniform dose for specification, report and
comparison of dose response relations and treatment plans. Phys. Med. Biol. 46, 2607–2630 (2001)

36. Meedt, G., Alber, M., Nüsslin, F.: Non-coplanar beam direction optimization for intensity-modulated
radiotherapy. Phys. Med. Biol. 48, 2999–3019 (2003)

37. Niemierko, A.: Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med.
Phys. 24, 103–110 (1997)

38. Niemierko, A., Urie, M., Goitein, M.: Optimization of 3d radiation-therapy with both physical and
biological end-points and constraints. Int. J. Radiat. Oncol. Biol. Phys. 23, 99–108 (1992)

123



J Glob Optim (2008) 42:587–607 607

39. Nocedal, J., Wright, S.: Numerical Optimization. Springer-Verlag, Inc., New York (1999)
40. Pugachev, A., Xing, L.: Computer-assisted selection of coplanar beam orientations in intensity-modu-

lated radiation therapy. Phys. Med. Biol. 46, 2467–2476 (2001)
41. Pugachev, A., Xing, L.: Pseudo beam’s-eye-view as applied to beam orientation selection in

intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 51, 1361–1370 (2001)
42. Pugachev, A., Xing, L.: Incorporating prior knowledge into beam orientation optimization in IMRT. Int.

J. Radiat. Oncol. Biol. Phys. 54, 1565–1574 (2002)
43. Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A., Li, J.G.: A novel linear programming approach

to fluence map optimization for intensity modulated radiation therapy treatment planning. Phys. Med.
Biol. 38, 3521–3542 (2003)

44. Romeijn, H.E., Dempsey, J.F., Li, J.G.: A unifying framework for multi-criteria fluence map optimization
models. Phys. Med. Biol. 49, 1991–2013 (2004)

45. Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A., Li, J.G.: A column generation approach to
radiation therapy treatment planning using aperature modulation. SIAM J. Optim. 15, 838–862 (2005)

46. Romeijn, H.E., Ahuja, R.K., Dempsey, J.F., Kumar, A.: A new linear programming approach to
radiation therapy treatment planning problems. Oper. Res. 54, 201–216 (2006)

47. Rowbottom, C.G., Oldham, M., Webb, S.: Constrained customization of non-coplanar beam orientations
in radiotherapy of brain tumours. Phys. Med. Biol. 44, 383–399 (1999)

48. Rowbottom, C.G., Webb, S., Oldham, M.: Beam-orientation customization using an artificial neural
network. Phys. Med. Biol. 44, 2251–2262 (1999)

49. Schreibmann, E., Lahanas, M., Xing, L., Baltas, D.: Multiobjective evolutionary optimization of the
number of beams, their orientations and weights for intensity-modulated radiation therapy. Phys. Med.
Biol. 49, 747–770 (2004)

50. Shepard, D.M., Ferris, M.C., Olivera, G.H., Mackie, T.R.: Optimizing the delivery of radiation therapy
to cancer patients. SIAM Rev. 41, 721–744 (1999)

51. Smith, R.L.: A monte carlo procedure for the random generation of feasible solutions to mathematical
programming problems. Bulletin of the TIMS/ORSA Joint National Meeting, p. 101 (1980)

52. Söderstrom, S., Brahme, A.: Selection of suitable beam orientations in radiation therapy using entropy
and fourier transform measures. Phys. Med. Biol. 37, 911–924 (1992)

53. Stein, J., Mohan, R., Wang, X.H., Bortfeld, T., Wu, Q., Preiser, K., Ling, C.C., Schlegel, W.: Number
and orientations of beams in intensity-modulated radiation treatments. Med. Phys. 24, 149–160 (1997)

54. Wu, Q.W., Mohan, R., Niemierko, A., Schmidt-Ullrich, R.: Optimization of intensity-modulated radio-
therapy plans based on the equivalent uniform dose. Int. J. Radiat. Oncol. Biol. Phys. 52, 224–235 (2002)

55. Wu, Q.W., Djajaputra, D., Wu, Y., Zhou, J.N., Liu, H.H., Mohan, R.: Intensity-modulated radiotherapy
optimization with geud-guided dose-volume objectives. Phys. Med. Biol. 48, 279–291 (2003)

123


	Neighborhood search approaches to beam orientation optimization in intensity modulated radiation therapy treatment planning
	Abstract
	1 Introduction
	2 Beam orientation optimization
	2.1 BOO model
	2.2 FMO model

	3 Neighborhood search approaches
	3.1 A deterministic neighborhood search method for BOO
	3.2 Simulated annealing
	3.3 A new neighborhood structure

	4 Results
	4.1 Add/Drop algorithm results
	4.2 Simulated annealing results
	4.3 Clinical implementation

	5 Conclusions
	Acknowledgements


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


